
1

BROWSER-
BASED SEO

Die besten Chrome DevTools Hacks

2

C H R I S S Y
Leidenschaftlicher Tech SEO,
Founder & Managing Director
@ ONE Beyond Search,
PhD in It depends & für immer
#screamingfrogultra

3

1 2 3 4

Was sind die
Chrome

DevTools?

Warum sind
sie so

mächtig?

Was kann man
als SEO damit

machen?

Wie nehme ich
das jetzt mit
nach Hause?

4

DANKE
an den
Ideengeber!

5

Und wenn der
Bastian das auch
sagt …

6

LET‘S GO!

7

Warum Chrome DevTools?

Die gute Nachricht: Alle großen Browser haben DevTools – Safari, Firefox,
Edge … die funktionieren vom Grundprinzip fast gleich.

Die „schlechte“ Nachricht: Ich arbeite am meisten mit Chrome – und deswegen
spielen heute alle Beispiele in Chrome.

8

What is all the fuzz about?

Wenn Du eine Website im Browser
aufrufst, siehst du sie fertig
zusammengebaut von außen.

Als SEO möchtest du allerdings
meistens hinter die Fassade schauen.

Wie ist sie wirklich zusammengebaut?

Wurde alles Wichtige eingebaut?

Warum funktioniert etwas nicht?

…

9

10

What is all the fuzz about?

DevTools sind wie eine
Röntgenbrille:

Sie lassen dich hinter die
Fassade schauen.

11

What is all the fuzz about?

Und je nach Tab siehst
du etwas anderes – quasi
wie ein Filter, je
nachdem, was du
genauer untersuchen
möchtest.

12

Wofür brauche ich das als SEO?

Kostenloses Tool für Tech SEO Checks
Bevor du teure SEO-Tools anschmeißt, kannst du mit den DevTools bereits viele
wichtige Dinge prüfen (HTML-Struktur, JS-Abhängigkeit, Page Speed uvm.)

Optimierungsmaßnahmen simulieren
Um vorab zu sehen, wie eine technische Anpassung wirken würde, kannst du in den
DevTools bereits Vieles testen (Requests blocken, Layout Shift fixen uvm.)

Auf Seitenebene Elemente scrapen
Um bestimmte Elemente zu extrahieren, kannst du mittels DevTools über verschiedene
Methoden Inhalte der aufgerufenen Seite scrapen (z. B. alle internen & externen Links)

Detektiv spielen
Da du über die DevTools Zugriff auf dem kompletten Network Traffic hast, kannst du
sehen, wie Aspekte der aufgerufenen Seite funktionieren (z. B. ChatGPT Web Search)

13

Wo genau finde ich nochmal die DevTools?

Option + Command + I Strg + I / F12

14

Oder wer lieber klickt ...

15

Macht das einen Unterschied? JA!
Untersuchen:

Zeigt den statischen HTML-Code, der von der
URL geladen wurde.

Enthält nicht die Änderungen, die z. B. durch
JavaScript nach dem Laden der Seite
vorgenommen wurden.

Kann nützlich sein, um den initialen Aufbau
der Seite zu verstehen.

Solltest du analysieren, um zu sehen, wie
deine Seite beim Crawl ohne Rendering
aussieht (sind alle relevanten Inhalte
trotzdem enthalten?)

Zeigt den DOM, also die tatsächliche Struktur
der Seite, die im Browser angezeigt wird.

Enthält auch alle Änderungen, die z. B. durch
JavaScript vorgenommen wurden.

Ermöglicht es, Elemente auf der Seite zu
manipulieren und die Auswirkungen sofort
zu sehen.

Solltest du verwenden, um das Verhalten
deiner Webseite besser zu verstehen oder
beispielsweise den Abgleich zum statischen
Quellcode vorzunehmen.

Seitenquelltext anzeigen:

Command + Option + U bzw. Strg + U Command + Option + I bzw. Strg + I

16

Macht das einen Unterschied? JA!
Untersuchen:

Zeigt den statischen HTML-Code, der von der
URL geladen wurde.

Enthält nicht die Änderungen, die z. B. durch
JavaScript nach dem Laden der Seite
vorgenommen wurden.

Kann nützlich sein, um den initialen Aufbau
der Seite zu verstehen.

Solltest du analysieren, um zu sehen, wie
deine Seite beim Crawl ohne Rendering
aussieht (sind alle relevanten Inhalte
trotzdem enthalten?)

Zeigt den DOM, also die tatsächliche Struktur
der Seite, die im Browser angezeigt wird.

Enthält auch alle Änderungen, die z. B. durch
JavaScript vorgenommen wurden.

Ermöglicht es, Elemente auf der Seite zu
manipulieren und die Auswirkungen sofort
zu sehen.

Solltest du verwenden, um das Verhalten
deiner Webseite besser zu verstehen oder
beispielsweise den Abgleich zum statischen
Quellcode vorzunehmen.

Seitenquelltext anzeigen:

Command + Option + U bzw. Strg + U Command + Option + I bzw. Strg + I

17

Macht das einen Unterschied? JA!

Zeigt den statischen HTML-Code, der von der
URL geladen wurde.

Enthält nicht die Änderungen, die z. B. durch
JavaScript nach dem Laden der Seite
vorgenommen wurden.

Kann nützlich sein, um den initialen Aufbau
der Seite zu verstehen.

Solltest du analysieren, um zu sehen, wie
deine Seite beim Crawl ohne Rendering
aussieht (sind alle relevanten Inhalte
trotzdem enthalten?)

Seitenquelltext anzeigen:

Command + Option + U bzw. Strg + U
So sehen alle Crawler
deine Seite, die “kein
JavaScript“ können →
das sind z. B. auch alle
LLM-Crawler aktuell

≈

18

Welche Filter gibt es?

19

So sieht es dann in Eurem Browser aus

20

Auf welchen
der vielen
Knöpfe soll
ich jetzt
drücken?

21

Konzentrier dich erstmal auf diese hier

22

ELEMENTS

23

Elements: Woraus ist die Seite gebaut?

Der Tab Elements ist
die Standardansicht
beim Öffnen und
zeigt dir den
gerenderten DOM
(HTML, CSS, JS)

24

Wie finde ich am schnellsten Elemente?

Hiermit kannst du einfach auf der Seite über
Elemente hovern und bekommst die Informationen
dazu.

Ein Klick scrollt dir den Code genau an die Stelle,
wo sich das Element befindet.

25

SELECT ELEMENT SCROLL INTO VIEW

26

Wann brauche ich das als SEO?

Generelles Inspizieren von HTML-
Element, z. B.

Was ist hier die H1?

Sind die Tabellen wirklich <tables>
oder wurde es nur so gestyled?

Werden semantische HTML Sections
genutzt wie <nav> oder <main>?

…

Validieren von Warnungen /
Informationen aus Crawl-Reports

Ist der Title wirklich außerhalb des
<head>?

Ist es wirklich ein 403 oder wurde der
Crawl geblockt?

…

27

Zwischen Desktop & Mobile View switchen

Hier kannst du das Device wechseln, um
deine Seite in verschiedenen Viewports zu
analysieren.

28

SWITCH DEVICE

29

Googlebot als „Device“ hinzufügen

Übersicht Google User-Agents

Übersicht Google User-Agents

https://developers.google.com/search/docs/crawling-indexing/overview-google-crawlers?hl=de%20%20https://developers.google.com/search/docs/crawling-indexing/overview-google-crawlers?hl=de

30

Old but Gold: hiddenkeywords.com

31

ELEMENTE MANIPULIEREN

Und Ihr könnt
im Browser
Frontend
Entwickler
spielen
Praktisch u.a. für Mini Mockups, Leute
können sich ja immer nix vorstellen …

32

Ist der Inhalt von Akkordeons
ohne Klick vorhanden?

Nur was ohne Klick bereits im Code ist,
wird von Crawlern „gesehen“:

Teil aus Antwort kopieren

Seite neu laden

Textstring im Code Suchen

(Ganz Antwort kopieren teilweise fehleranfällig weil HMTL-
Elemente wie Line Breaks enthalten sein können und dann
beim Exact Match kein Ergebnis erzeugen)

33

ECHTE HTML LINKS SEHT IHR GRUNDSÄTZLICH HIER

34

Sind die Links der Hauptnavigation ohne Klick
im Flyout enthalten?

Nur was ohne Klick bereits im Code ist,
wird von Crawlern „gesehen“:

Link kopieren

Absoluten Pfad entfernen (interne Links
i.d.R. immer relativ)

Seite neu laden

Textstring im Code Suchen

35

Ob er auch bereits im statischen Code enthalten
ist? View Source!

Rechtsklick

Seitenquelltext anzeigen

Textstring im Code Suchen

36

Wann brauche ich das als SEO?

Prüfung, ob SEO-relevante Elemente / Inhalte von JavaScript
abhängen oder sogar von einer User Interaktion:

z. B. H1, generell relevanter Text

Nur mit JavaScript sichtbar: voraussichtlich nur Google wird diese
Elemente sehen

Von User Interaktion abhängig: gar kein Crawler wird dieser Elemente
sehen

Ist es kein echter HTML-Link (a href) kommt der Crawler auch nicht von A
nach B

37

Mit CSS-Selektoren & XPath nach Mustern
suchen

38

DAS SIEHT DANN IN ETWA SO AUS

39

Bei XPath jedes Mal lost?

Im Anhang
gibt’s Tipps für
Einsteiger

40

Und genau das könnt Ihr hier reinkopieren

Jetzt könnt Ihr
beliebige Elemente
Eurer Seiten
extrahieren, die in
keinem
Standardreport
enthalten sind.

41

CONSOLE

42

Die kennt ihr vielleicht hiervon: console.log

Live-Terminal für
die geöffnete
Website – zeigt
Fehler an und
erlaubt es, direkt
mit dem Code der
Seite zu arbeiten.

43

Das ist die hier: console.log(„YAY“);

Live-Terminal für
die geöffnete
Website – zeigt
Fehler an und
erlaubt es, direkt
mit dem Code der
Seite zu arbeiten.

44

Bei vielen Websites sieht es eher so aus

Hier werden alle Fehler und Warnungen gelistet,
die bei der Ausführung des JavaScript entstehen
(auch die der Chrome Extensions)

45

Deswegen gibt es ein tolles Feature

46

Deswegen gibt es ein tolles Feature

47

Jetzt kommt der
Moment, wo Ihr
JavaScript
braucht …

Jetzt
JavaScript
lernen

Schön
Vibe Coding
ballern

48

ERFAHRUNGSGEMÄSS DIE GRÖSSTE HÜRDE

49

Alle Links einer site:Abfrage extrahieren

50

Als Tabelle ausgeben lassen

51

Oder direkt Copy to Clipboard

52

Alle falschen URLs gleich rausfiltern

53

Code Snippets to Go

function getAllLinks() {
return [...document.querySelectorAll("a")].map(a => a.href);

}

let links = getAllLinks();
console.log(links);

copy(links.join("\n"));
console.log("Alle Links wurden in die Zwischenablage kopiert!");

function getAllLinks() {
return [...document.querySelectorAll("a")].map(a => a.href);

}

let links = getAllLinks();
console.table(links);

// 1. Alle Links einsammeln und nach "google" filtern
function getAllLinks() {
return Array.from(document.querySelectorAll("a"))
.map(a => a.href)
.filter(url => !url.toLowerCase().includes("google")); // Filter

}

// 2. Ausgabe als Tabelle in der Konsole
let links = getAllLinks();
console.table(links);

54

Jetzt ist auch in etwa klar wie man Rankings
scraped, oder?
Der Act ist nicht, das URLs rausfischen.

55

Jetzt braucht man nur ein bisschen Kreativität
… Inspo für weitere Skripte

Alle Links nach Attributen highlighten

Headline Struktur visualisieren oder extrahieren

Broken Links markieren

Quellen aus den AI Overviews scrapen

PAA Fragen extrahieren

Alle YouTube Videolinks aus Übersicht extrahieren

…

56

NETWORK

57

Network: Welche Files werden wie geladen?

Du siehst welche
Files geladen
werden, wie schnell
es passiert und ob
dabei Fehler
auftreten.

58

Es muss immer erst ein Reload gemacht werden

59

Rechtsklick: Spalten der Tabelle auswählen

60

Filter nach Content Type

61

Bedingungen für Reload festlegen

62

Wofür brauche ich das als SEO?

Besonders Page Speed Themen können hier gut analysiert werden z. B.

Mit welchem Protokoll wird die Seite geladen? (HTTP/1.1, h2, h3)

Von welchen Domains werde Files geladen?

Wird GTM & Co tatsächlich NICHT geladen, wenn Cookies abgelehnt wurden?

Wird 3-mal die gleiche Schrift geladen?

Wie schnell lädt die Seite, wenn ich Requests von einer bestimmten Domain
blocke?

…

63

Aber eigentlich sind wir ja hier zum Spionieren

64

Was steht da drin?

Welche Queries
werden aus Eurem
Prompt fürs
Grounding generiert?

Welche Quellen
werden berücksichtigt
für die Antwort?

65

Jeden Tag gibt‘s neue Erkenntnisse …

66

APPLICATION

67

Application: was wird beim Client gespeichert?

Hier findest du alles
was eine Seite bei
dir speichert:
Cookies, Dateien im
Local Storage,
Service Worker etc.

68

So leicht kannst du die Cookies löschen

Rechtsklick

69

Tada!

70

Wann brauche ich das als SEO?

User-Agents wie Google akzeptieren keine Cookies.
So kannst du z. B. testen

Ob du Inhalt angezeigt bekommst

Wenn ja, welchen?

Wohin leitet dich ein automatisierter Geo-Redirect ohne Cookies?

In manchen Fällen wird auch über einen Custom Cookie eine Authentifizierung für eine
Testumgebung bereitgestellt. Du kannst hier nicht nur Cookies löschen, sondern auch verändern.

71

LIGHTHOUSE

72

Lighthouse: der wohl simpelste Tab

Hier kannst du ganz
klassisch für die
aufgerufene Seite
einen Lighthouse
Test laufen lassen.

73

Allerdings bin ich kein Fan davon. Warum?

Chrome-Extensions verfälschen Ergebnisse→
können z. B. extra JavaScript einfügen,
Netzwerkanfragen blockieren oder Tracking-Skripte
hinzufügen.

DevTools-Umgebung ≠ echte Nutzerumgebung→
Tests laufen im Debugger-Modus, was Performance
misst, die nicht realistisch ist.

Lokal vs. Produktion→ Lighthouse im DevTools
läuft oft gegen die lokale Version, nicht die live
ausgelieferte Seite (CDN, Cache, Kompression
fehlen).

Bessere Ergebnisse
bekommt man
zumindest im
Inkognito Modus
ohne Extensions

74

MORE TOOLS

75

More Tools: noch mehr Auswahl

Hier gibts sämtliche
weiteren Tools,
hauptsächlich eins
davon nutze ich
regelmäßig…

76

Coverage Tool – oder wie ich es nenne:
Frontend Entwicklern auf den Nerv gehen

77

MCP SERVER
FÜR DEVTOOLS

78

All the cool kids are doing it: MCP Server

zum Blogartikel

zum Blogartikel

Geht nur mit lokal
installierten Apps
(ChatGPT Desktop,
Cursor, …)

https://developer.chrome.com/blog/chrome-devtools-mcp?hl=de

79

Wenn‘s connected ist, siehts etwa so aus

80
Beispiel: Page Speed Check + Umsetzung

81

Optimierung
übernimmt Cursor
und ihr müsst nur
noch reviewen

82
Beispiel: Contentabgleich Top rankende URLs

83
Beispiel: Markup erstellen oder erweitern

84

Spätestens
jetzt solltet
Ihr mit mir
die DevTools
abfeiern!

85

UND NU?

86

Chrome DevTools in a nutshell

Röntgenblick
für Websites

Schau hinter die
Fassade und erkenne,
was wirklich im DOM
passiert, was JS
nachlädt und was
Crawler tatsächlich
sehen.

Mini-Labor im
Browser

Teste, manipuliere,
simuliere verschiedene
Viewports,
Ladeszenarien & Co bis
hin zu spontanen SEO-
Mockups.

Hacks & Micro
Automation

Mit ein paar Zeilen in
der Console scrapen,
filtern oder highlighten,
um deinen SEO-Alltag
mit ein bisschen
Kreativität effizienter
zu machen.

Next Level mit
MCP & Agenten

Chrome fernsteuern,
Daten verbinden,
Routinejobs
automatisieren – das
Browser-Based SEO
von morgen.

87

Das ist alles ein bisschen
viel zu merken?

Cheatsheet mit allen Tabs
inkl. Beispiel Cases

88

Kein Bock jedes Mal
deine User Skripte
neu einzugeben?

Chrome Extension als Vault
mit bereits gespeicherten

Skripten & Möglichkeit
eigene zu speichern

89

Good News: wenn ihr die Brille absetzt, ist alles wieder wie
vorher – ihr könnt nichts mal eben so kaputt machen!*

90

onebeyondsearch.com

Ihr habt
Fragen?

Chrissy Kunisch

https://www.linkedin.com/in/christiane-kunisch-52b26312b/
mailto:christiane.kunisch@onebeyondsearch.com

91

little favor,
if you liked it

92

93

ANHANG

94

Let‘s break it down

//meta

//meta

//meta [@name="description"]

//meta [@name="description"]

Das steht da immer!*

Das ist das HTML-Tag, das du suchst!

Optional: spezifizieren nach Klasse,
ID, Name, …

Dann musst du auch den Wert dieser
Spezifikation hinzufügen

Beispiel: <meta name="description" content=“Das ist eine Beschreibung yay!">

*nicht immer immer aber das ist an dieser Stelle irrelevant

95

Zum selbst Mitdenken

//meta

//div

//div [@class=“content-rating"]

//div [@class=“content-rating"]

Das steht da immer!*

Das ist das HTML-Tag, das du suchst!

Optional: spezifizieren nach Klasse,
ID, Name, …

Dann musst du auch den Wert dieser
Spezifikation hinzufügen

Beispiel: <div class="content-rating"></div>

*nicht immer immer aber das ist an dieser Stelle irrelevant

96

Zum selbst Mitdenken

//meta

//div

//div [@class=“content-rating"]

//div [@class=“content-rating"]

Das steht da immer!*

Das ist das HTML-Tag, das du suchst!

Optional: spezifizieren nach Klasse,
ID, Name, …

Dann musst du auch den Wert dieser
Spezifikation hinzufügen

Beispiel: <div class="content-rating"></div>

*nicht immer immer aber das ist an dieser Stelle irrelevant

97

Zum selbst Mitdenken

//meta

//div

//div [@class=“content-rating"]

//div [@class=“content-rating"]

Das steht da immer!*

Das ist das HTML-Tag, das du suchst!

Optional: spezifizieren nach Klasse,
ID, Name, …

Dann musst du auch den Wert dieser
Spezifikation hinzufügen

Beispiel: <div class="content-rating"></div>

*nicht immer immer aber das ist an dieser Stelle irrelevant

98

Zum selbst Mitdenken

//meta

//div

//div [@class=“content-rating"]

//div [@class=“content-rating"]

Das steht da immer!*

Das ist das HTML-Tag, das du suchst!

Optional: spezifizieren nach Klasse,
ID, Name, …

Dann musst du auch den Wert dieser
Spezifikation hinzufügen

Beispiel: <div class="content-rating"></div>

*nicht immer immer aber das ist an dieser Stelle irrelevant

99

Alle Elemente einer Sorte

<html>
<head>

<meta name="description" content=“Beispiel Description"/>
</head>

<body>
<div>

Link A1
Link A2

</div>

<div>
Link B1

</div>

<p>
Link C1

</p>
</body>

</html>

//a
alle Links auf der
Seite, egal wo

A1, A2, B1, C1

100

Alle Elemente einer Sorte mit Bedingung

<html>
<head>

<meta name="description" content=“Beispiel Description"/>
</head>

<body>
<div>

Link A1
Link A2

</div>

<div>
Link B1

</div>

<p>
Link C1

</p>
</body>

</html>

//div/a
alle <a> innerhalb von
<div>-Elementen

A1, A2, B1

101

Alle Elemente einer Sorte an spezieller Position

<html>
<head>

<meta name="description" content=“Beispiel Description"/>
</head>

<body>
<div>

Link A1
Link A2

</div>

<div>
Link B1

</div>

<p>
Link C1

</p>
</body>

</html>

//div/a[2]
das zweite <a> pro
<div>

A2

	Slide 1: BROWSER-BASED SEO
	Slide 2
	Slide 3
	Slide 4: DANKE an den Ideengeber!
	Slide 5: Und wenn der Bastian das auch sagt …
	Slide 6: LET‘S GO!
	Slide 7: Warum Chrome DevTools?
	Slide 8: What is all the fuzz about?
	Slide 9
	Slide 10: What is all the fuzz about?
	Slide 11: What is all the fuzz about?
	Slide 12: Wofür brauche ich das als SEO?
	Slide 13: Wo genau finde ich nochmal die DevTools?
	Slide 14: Oder wer lieber klickt ...
	Slide 15: Macht das einen Unterschied? JA!
	Slide 16: Macht das einen Unterschied? JA!
	Slide 17: Macht das einen Unterschied? JA!
	Slide 18: Welche Filter gibt es?
	Slide 19: So sieht es dann in Eurem Browser aus
	Slide 20: Auf welchen der vielen Knöpfe soll ich jetzt drücken?
	Slide 21: Konzentrier dich erstmal auf diese hier
	Slide 22: ELEMENTS
	Slide 23: Elements: Woraus ist die Seite gebaut?
	Slide 24: Wie finde ich am schnellsten Elemente?
	Slide 25
	Slide 26: Wann brauche ich das als SEO?
	Slide 27: Zwischen Desktop & Mobile View switchen
	Slide 28
	Slide 29: Googlebot als „Device“ hinzufügen
	Slide 30: Old but Gold: hiddenkeywords.com
	Slide 31
	Slide 32: Ist der Inhalt von Akkordeons ohne Klick vorhanden?
	Slide 33
	Slide 34: Sind die Links der Hauptnavigation ohne Klick im Flyout enthalten?
	Slide 35: Ob er auch bereits im statischen Code enthalten ist? View Source!
	Slide 36: Wann brauche ich das als SEO?
	Slide 37: Mit CSS-Selektoren & XPath nach Mustern suchen
	Slide 38
	Slide 39: Bei XPath jedes Mal lost?
	Slide 40: Und genau das könnt Ihr hier reinkopieren
	Slide 41: CONSOLE
	Slide 42: Die kennt ihr vielleicht hiervon: console.log
	Slide 43: Das ist die hier: console.log(„YAY“);
	Slide 44: Bei vielen Websites sieht es eher so aus
	Slide 45: Deswegen gibt es ein tolles Feature
	Slide 46: Deswegen gibt es ein tolles Feature
	Slide 47: Jetzt kommt der Moment, wo Ihr JavaScript braucht …
	Slide 48
	Slide 49: Alle Links einer site:Abfrage extrahieren
	Slide 50: Als Tabelle ausgeben lassen
	Slide 51: Oder direkt Copy to Clipboard
	Slide 52: Alle falschen URLs gleich rausfiltern
	Slide 53: Code Snippets to Go
	Slide 54: Jetzt ist auch in etwa klar wie man Rankings scraped, oder?
	Slide 55: Jetzt braucht man nur ein bisschen Kreativität … Inspo für weitere Skripte
	Slide 56: NETWORK
	Slide 57: Network: Welche Files werden wie geladen?
	Slide 58: Es muss immer erst ein Reload gemacht werden
	Slide 59: Rechtsklick: Spalten der Tabelle auswählen
	Slide 60: Filter nach Content Type
	Slide 61: Bedingungen für Reload festlegen
	Slide 62: Wofür brauche ich das als SEO?
	Slide 63: Aber eigentlich sind wir ja hier zum Spionieren
	Slide 64: Was steht da drin?
	Slide 65: Jeden Tag gibt‘s neue Erkenntnisse …
	Slide 66: APPLICATION
	Slide 67: Application: was wird beim Client gespeichert?
	Slide 68: So leicht kannst du die Cookies löschen
	Slide 69: Tada!
	Slide 70: Wann brauche ich das als SEO?
	Slide 71: LIGHTHOUSE
	Slide 72: Lighthouse: der wohl simpelste Tab
	Slide 73: Allerdings bin ich kein Fan davon. Warum?
	Slide 74: MORE TOOLS
	Slide 75: More Tools: noch mehr Auswahl
	Slide 76: Coverage Tool – oder wie ich es nenne: Frontend Entwicklern auf den Nerv gehen
	Slide 77: MCP SERVER FÜR DEVTOOLS
	Slide 78: All the cool kids are doing it: MCP Server
	Slide 79: Wenn‘s connected ist, siehts etwa so aus
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: UND NU?
	Slide 86: Chrome DevTools in a nutshell
	Slide 87: Das ist alles ein bisschen viel zu merken?
	Slide 88: Kein Bock jedes Mal deine User Skripte neu einzugeben?
	Slide 89
	Slide 90
	Slide 91
	Slide 92: DANKE
	Slide 93: ANHANG
	Slide 94: Let‘s break it down
	Slide 95: Zum selbst Mitdenken
	Slide 96: Zum selbst Mitdenken
	Slide 97: Zum selbst Mitdenken
	Slide 98: Zum selbst Mitdenken
	Slide 99: Alle Elemente einer Sorte
	Slide 100: Alle Elemente einer Sorte mit Bedingung
	Slide 101: Alle Elemente einer Sorte an spezieller Position

